利达文学网

第78章 数学新篇 一元二次方程的奥秘(第1页)

数学新篇:一元二次方程的奥秘

京城的学府内,戴浩文决定为学子们开启新的知识篇章——一元二次方程。

课堂上,戴浩文神色专注地站在讲台上,看着下面一双双充满好奇与期待的眼睛,缓缓开口道:“同学们,今天我们要学习一种新的数学知识——一元二次方程。

一元二次方程是只含有一个未知数,并且未知数的最高次数是2的整式方程。

它的一般形式是ax2+bx+c=0,其中a、b、c是常数,且a≠0。

这里的a称为二次项系数,b是一次项系数,c是常数项。

比如,2x2-3x+1=0就是一个典型的一元二次方程,其中2是二次项系数,-3是一次项系数,1是常数项。”

戴浩文边说边在黑板上写下这个式子和相关的解释。

一位学子举手问道:“先生,那为什么a不能等于0呢?”

戴浩文微笑着回答:“如果a等于0,那这个方程就变成了bx+c=0,这就不再是二次方程,而是一次方程啦。

所以a不能为0,这是定义一元二次方程的关键条件。”

接着,戴浩文开始讲解一元二次方程的解法。

“求解一元二次方程,我们常用的方法有配方法、公式法和因式分解法。”

他在黑板上写下一个方程:x2+4x-5=0,然后说道:“我们先用配方法来解这个方程。

首先,在等式两边加上一次项系数一半的平方。”

边说边进行演示,学子们目不转睛地看着。

有个学生疑惑地问:“先生,那公式法又是怎么用的呢?”

戴浩文耐心地解释:“对于一元二次方程ax2+bx+c=0,其解为x=[-b±√(b2-4ac)](2a)。

我们来看刚才那个例子,a=1,b=4,c=-5,代入公式就能求解。”

随后,戴浩文又列举了生活中的实际应用例子。

“比如,我们要建造一个面积为一定值的矩形花园,已知花园的长比宽多3米,设宽为x米,那么长就是x+3米,面积可以表示为x(x+3),根据给定的面积值,就能列出一个一元二次方程来求解花园的长和宽。”

学子们纷纷点头,开始自己动手练习。

请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。

本月排行榜
本周收藏榜
最新更新
    新书入库
    热门小说推荐

    ...

    ...

    ...

    ...

    ...

    ...

    每日热搜小说推荐