……
“……你看,这样就是一个椭圆曲线了。
不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。
如果特征不等于2的话,那么仿射方程就是^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。
阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。
这是我看了很多相关理论之后才找到的方法。
这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。
右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。
接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。
只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。
不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。
整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。
才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。
毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。
他拼了命学最后也只是勉强过关,拿到了学分。
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
...
主神,挂了!主神殿,失去了主人。问苍茫大地,谁主沉浮!主神已亡,群雄争锋,昔日的轮回者开始竞争着,争夺着至高无上的主神权柄!刘秀,崛起于微末,征战于诸天,证道于万界!...
嫡长子的日常有权衡有取舍活着,不仅仅为自己活着该承担的责任必须要去承担家族,不止是荣耀的延续在其位做其事只求无愧于心贾家,依旧是煊赫的贾家来自贾赦大老爷的自言自语一句话的简介贾赦的生活日常。拒绝扒榜...
陆大强在旁人眼里是个泼皮无赖,婆娘跑了之后独自抚养儿子长大,儿子很争气长大后开创了一番自己的事业,但是很气愤的事,儿子一直不结婚,而且心里眼里都是他的死对头,把对方当亲爹一样待。老头儿怎么忍得了战...
宠物流,没有阅读门槛,点个收藏嘛。一觉醒来,梦醒时分。白云之中有神山,天堂位立神山顶。上古虫母霸占天堂顶,亿万虫族虎视眈眈。召唤位面,千族精灵,纯血龙族,灭国妖兽,三国鼎立,谁主沉浮。埋藏在九寨五彩天池中的图腾之秘,五彩鸾鸟即将重现世界。茶卡盐湖映出异世天空,一沙一世界,一盐一宇宙,异世霸主点将杀伐,湖中传来阵阵战鼓擂。妖都神秘驭虫世家掌握远古驭虫术,是驭虫还是养蛊仅在一念之间。暗黑王魂魄存于世间,杀人不过头点地。亚马逊神巫施云布雨,南极神帝冰封天下,沙哈拉现幕后黑手。世界大乱是巧合还是预谋?圣城一直扮演什么角色?世界学府之争到底争什么?全职法师同人,原世界线相同时间。群230406253...
林赏转部之后的任务是改变虐文结局,扭be为he。被白莲花系统训练出来的林赏转部之后还改不了之前的习惯,做什么都一股子惹人怜爱的气息。渣攻为之沉迷,好不容易把白月光从渣男心底剔除掉,结局要大团圆的时候...